MALTODEXTRIN FAST-DISSOLVING FILM: A FEASIBILITY STUDY

Francesco Cilurzo1,2, Paola Minghetti1,2, Andrea Como1, Luisa Montanari1,2
1Pharmaceuticals and Biotechnology, University of Milan, Italy; 2Centre for Clinical Pharmacology and Translational Medicine, University of Milan, Italy

e-mail: francesco.cilurzo@unimi.it

INTRODUCTION

Fast-dissolving drug delivery is rapidly gaining interest in the pharmaceutical industry. These systems either dissolve or disintegrate generally within a minute, without needing water or chewing. An important benefit is the accurate dosing as compared to liquid dosage forms, mostly used with paediatric patients or in case of dysphagia. Moreover, these systems may offer superior clinical profiles with potential oromucosal absorption, thus increasing the drug bioavailability with respect to oral administration. Fast-dissolving drug delivery systems are mainly tablets, and their rapid disintegrating properties are obtained through special process (freeze-drying or tablet moulding, over all) or formulation modifications (superdisintegrants and sugar-based ingredients).

Recently thin films have been proposed as an alternative fast dissolving dosage form. Films can be produced by solvent cast methods or hot-melt extrusion technology. It is well known that the solvent cast method suffers from several disadvantages over the hot-melt extrusion method due to the solvent residues within the film and the environmental risks in the case of organic solvent. In addition, extrusion facilities are economic as compared to solvent cast ones. The fast dissolving films reported in literature are generally made of an hydrocolloid (e.g. pullulan or cellulose derivatives) and a plasticizer.

AIM OF THE WORK

The aim of this work was to evaluate the feasibility of a fast dissolving film made of a maltodextrin plasticized by glycerin by solvent free hot-melt extrusion technology. Loading capacity and the in vivo performances of the film were assayed by using paracetamol as model drug because its bioavailability can be determined in saliva.

MATERIALS and METHODS

Materials

- Glucdex IT12 (D.E.=12) (Gmk IT12) (Rosetta, F); Glycerin (Gly) (APOLMED, Italy); Paracetamol (Pai, Cibi, Acupa PF 12™/Avi 101™) (FMC Biopolymer, USA); Menth (Menth) (Fluka, I);
- TECNOVA srl

Film preparation

The placebo and drug loaded films were realized into a mono screw extrusor, (M/C, Acupa PF 12™/Avi 101™) (FMC Biopolymer, USA); Menth (Menth) (Fluka, I).

Thickness was evaluated by using an electronic micrometer MI-1000 (Cheminstruments, USA).

Disintegration test was performed according to Ph.Eur 5 Ed.

Dissolution test was carried out according to paddle apparatus Ph.Eur 5 Ed. (900 ml, phosphate buffer pH 6.8, 37°C, 50 rpm). Paracetamol concentrations were assayed spectrophotometrically at 241 nm (DI-640, Beckman Coulter, USA).

In vivo testing Fourteen healthy volunteers (10 females and 4 males) aged from 23 to 30 years, participated in this study, after giving informed consent. Each volunteer received a single oral administration of a film containing 50 mg of paracetamol. Two weeks later they received the same dose in syrup (Tachipirina sciroppo, ACRAF, I). After 5 minutes they rinsed their mouth with a wash of 20% (v/v) ethanol solution. The main pharmacokinetic parameters calculated from the saliva concentration after syrup and film intakes resulted: C_max,syrup: 14.7±2.5 mg/ml; C_max,film: 42.2±5.6 mg/ml; AUC_syrup: 377.8±83.8 µg × min/ml; AUC_film: 664.6±125.2 µg × min/ml.

RESULTS

In vivo testing

- The volunteers reported that the paracetamol film disintegrated within a minute.
- The main pharmacokinetic parameters calculated from the saliva concentration after syrup and film intake resulted:
 - C_max,syrup: 14.7±2.5 mg/ml
 - C_max,film: 42.2±5.6 mg/ml
 - AUC_syrup: 377.8±83.8 µg × min/ml
 - AUC_film: 664.6±125.2 µg × min/ml
 - AUC and C_max obtained after film administration were higher than those determined after the syrup intake. These results can be attributed to a partial oromucosal absorption of paracetamol following the film administration.

Conclusions

Maltodextrin can be used to produce fast-dissolving films with a high drug loading capacity by hot-melt extrusion technology.

Acknowledgements

The authors gratefully acknowledge TECNOVA srl for its qualified design and support.

TECNOVA srl
Via Verbania 56/a Oleggio (No, Italy).
Tel. +39.0321.91700 Fax +39.0321.94341
www.tecnova-srl.it